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Abstract— The restrictions imposed on real-time functioning 

are sometimes particularly severe and require firm action. At the 
same time, the design of the control algorithms for perturbations 
rejection includes a multitude of theoretical and practical 
solutions that exist in the literature. Here, we can note the 
methods based on robustification, on algorithms with specific 
degrees of freedom, etc. The paper presents a method based on 
the very rapid switching of the control algorithms, proposing at 
the same time a new switching method. The solutions proposed 
are tested on an MIMO process in a real time application in the 
vehicle control area. 

Keywords—real time, switching, disturbance rejection, control 
algorithm, automotive; 

I. INTRODUCTION 

Reference tracking and perturbations rejection are the most 
important functions of an control system. As a matter of fact, 
the literature and current practice contain a multitude of 
methods with outstanding results. Among these, we can 
highlight those based on the robustification of control loops [1-
3], on the design of different performances in reference 
tracking and perturbations rejection [4] etc. Some of these are 
also found in real-time applications. 

And yet, the emergence of new areas of applicability (eg 
smart cars, smart city, smart grid, etc.) or the advance of the 
current technology raise new and new challenges for 
automation control specialists. Moreover, real-time 
functioning/operation conditioning, having limited hardware 
and software architectures for minimal energy consumption, 
requires a fine balance between theory and practice. 

This paper attempts to present the results of a practical 
research for the implementation of an assisted (autonomous) 
tracking system of the lanes. The subject falls within the 
broader scope of "smart cars" that can move on their own. 

In the context of using electric vehicles, one of the current 
solutions is based on individual propulsion systems (engine 
ensemble) for each wheel or for each final power transmission 
element (propeller, caterpillar track, etc.) [2], [5]. This 

approach involves the control of a multivariable system, which 
is, most of the times, very complex.  

In the current practice, the control solution of several 
multivariable systems often calls for the decentralization of the 
control loops, trying to reduce the multivariable system to the 
simplest one, possibly of SISO type, controlled by classical 
algorithms. 

At the same time, the very high perturbations that can 
affect a system with a certain classical configuration cannot be 
rejected in a very short time. As it results from the practice, a 
large part of the solutions is based on the robustification of the 
control algorithms [3], [4], etc. Clearly, the cost of these 
approaches is high and sometimes extremely complicated for 
the real-time implementation. 

The solution proposed for the rejection of large 
perturbations is based on a multi-controller structure that 
allows to switch the control algorithms. For the normal 
functioning/operation, a classical algorithm is used, e.g. PID, 
RST, etc. specifically designed for reference tracking and 
rejecting "normal" perturbations. If the perturbations exceed a 
certain threshold value, the algorithm switches to a specially 
designed one that has a firm, very fast action. 

The switching method is very fast, assuming the "freezing" 
and "de-freezing" of the main loop, a procedure that uses a 
minimum of hardware - software resources. 

The particularity of the axial (left-right) symmetry of the 
controlled process (an electric vehicle model) supports the 
proposed structure applicability.  

II. PROPOSED CONTROL STRUCTURE 

A. Existing Solutions 

The use of multi-model or multi-controller control 
structures provides outstanding results for complex, non-linear 
systems or with different operating regimes. Some examples 
can also be found in [6, 7] or [8]. 

Algorithms switching in these structures is a specific 
problem and has various solutions. 
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The most widely used switching procedure relies on the 
control algorithms "hot" state [6], [8]. The procedure deals 
with operating all the algorithms, as though they were 
connected to the real process and with applying the calculated 
command to the process, but just the most adequate one. We 
obtain efficient switching through decoupling (physical / 
informational) the active algorithm control and coupling an 
(other) command which is calculated by another algorithm. 

For simple algorithms (PI, PID, or any other structure that 
hasn’t got high numerical complexity), the outcome in practice 
is good and the bumps which are generated are, in general, 
small or acceptable. 

Nevertheless, all the control algorithms continuous 
operation in the MM structure needs an outstanding hardware-
software architecture, because its complexity grows together 
with the number of the necessary models / algorithms. 

A variant of this solution proposes, similarly to fuzzy 
systems, to mix the algorithm commands in a proportion that 
depends on the adequacy of the respective algorithms relative 
to the current functioning point [9]. 

Another eye-catching solution, proposed in [10, 11] also 
known as the "backward computed reference", relies on 
switching the manual - automatic (M -> A) regimes with as 
few bumps as possible.  

Still, this solution also requests a significant hardware-
software effort, which can, at times, be higher than the classical 
one.  

The real-time hardware architecture used in terrestrial or 
aerial electric vehicles has several restrictions in terms of 
energy consumption and complexity [12]. 

For this reason, we propose for the study an architecture 
that uses a minimum of resources. 

B. Proposed Solution 

The proposed structure is based on two algorithms that will 
be switched depending on the contextual situation of the 
controlled process. For the case in which the process is 
"normal," algorithm 1 - "classical" ensures the reference 
tracking and rejection of "normal" (small-medium) 
perturbations. If the value of the perturbations is high or very 
high, switching to algorithm 2, of multi-position type, will take 

place. This is a three-positional algorithm with several values 
of the "positive" and "negative" commands.  

Figure 1 shows the general structure. The values are as 
follows: sp –system reference, u –calculated command of the 
whole system, y – adjusted value, u1, u2 – calculated 
commands by the two algorithms, switch, freeze – commands 
given for algorithms switching, respectively for “freezing” 
algorithm 1. 

Applying the second algorithm (No. 2) brings the process 
into the "normal" functioning band after a number of sampling 
periods. This situation leads to switching to the first control 
algorithm (No. 1 - the "classical" one). The functioning is 
explained in equation (1). 
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When switching / activating, the multi-positional  algorithm 
2, will apply a command equal to the last command calculated 
by the "classical" algorithm uf – u frozen, to which a "positive" 
or "negative" value is added, corresponding to the error value 
which affects the process. 

Typically, the greater the error, the more "firm" the 
corrective action, having the option of applying thresholds or 
steps. Clearly, these thresholds can be replaced by the value 
calculated in proportion to the error value. 

Figure 2 shows this structure. The notations included are as 
follows: err = sp-y error (of control); +/- Li_ON, +/- Li_OFF 
limits of activation, deactivation of the commands steps; +/- 
u2_v1, +/- u2_v2 commands steps. 

The steps variant is favored by how the system error is 
presented. In many systems, this information has a fuzzy 
representation (small - large - very large). 

After rejecting the perturbations, before reactivating 
algorithm 1 ("classical"), the command applied to the process 
equals uf.  

 
 

Fig. 1. Multi algorithms switching structure 

 
 

Fig. 2. Multi positional algorithm structure 
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C. Switching Procedure Implementation 

One of the problematics specific to those types of multi-
model or multi-algorithm structures [6-11], [13] is the 
command switching procedure. This should be done as quickly 
as possible with the commands shocks (determined by the 
procedure itself) as small as possible. 

As presented in the introduction, the proposed solution is 
based on the functional "freezing" of the "classical" algorithm, 
of PID, RST type, etc.. This approach provides a minimum 
number of arithmetic operations and a non-shock passage of 
the command calculated at the reactivation ("de-freezing"). 

In order to clarify this procedure, we will make a few 
references to the real-time implementation of an RST 
algorithm [4]. For example, it can offer the possibility of 
imposing different performances in rejecting perturbations and 
reference tracking. The choice is justified by its general form, 
the implementation of a simpler numerical algorithm (PID) 
being obviously easier after understanding these aspects. 

The form of this algorithm is the following: 

1 1 1 *( ) ( ) ( ) ( ) ( ) ( )S q u k R q y k T q y k− − −+ =  (2) 

in which: u(k) – the output of the algorithm, y(k) – the 
output of the process, y*(k) – the trajectory that is imposed or 
filtered set point. The polynomials which correspond to them 
are as follows: 
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The representation of the closed-loop control is shown in 
[10]. 

The control algorithm in (3) can be rewritten as: 
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nS , nR , nT are the degrees of the corresponding 
polynomials end entail the memory required for controller 
software algorithm implementation. For example, if nR=2, then 
three memory locations must be kept for the output of the 
process: y(k), y(k-1), y(k-2). The same rule can be used for 
u(k) and y*(k).  

Inside the infinite loop [10] of the command calculation 
procedure u(k), the code implementing equation (4) is executed 
after the acquisition of the controlled value y(k) has occurred. 

Still in this infinite loop, these memory variables of the 
algorithm (y(k), u(k) and y*(k)) go through an update process 

for a new cycle performed at the next period of the 
corresponding sampling: 

* * * *
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In this context, the "freezing" of the algorithm involves the 
suspension of the mathematical operations (implemented in the 
code) described by equations (4) and (5) for a number of n 
sampling periods. All the memory variables will retain their 
last values until the “de-freezing” time. 

During the suspension of these operations, algorithm no. 2 - 
"multi-positional”, is executed. 

III. CASE STUDY AND EXPERIMENTS 

The performances of the control structure and the rapidity 
of the switching method have been tested on the electric 
vehicle model. In addition to movement controlling the 
hardware -software structure has the role of implementing a 
"lane assist" functionality, which is also present in the case of a 
larger "smart car"-type system. The basic idea in the 
implementation was to find a real-time solution that uses as 
few resources as possible. 

A. Hardware and software structure 

Structurally, the controlled process is a MIMO type one. 
The vehicle has an axial symmetry (left-right, L-R), with 
electric motors for each of the four wheels. There are two main 
loops for the speed control for each side (L-R), each loop 
commanding the speed of two motors/engines. In order to 
change the direction of driving, we can impose an L-R speed 
difference, since the system does not have guiding wheels or 
other specific elements. This particularity renders the system 
applicable also to caterpillar track [14, 15] or propeller [5] 
vehicles.  

Figure 3 shows this system. In the figure, the values are as 
follows: sp_L, sp_R the references of the two control loops;  
y_L, y_R the L, R speeds (coming from the encoders); u_f_L, 
u_r_L, u_f_R, u_r_R – the commands given to the motors front 
(f)/back (r) on the left side (L), respectively the right side (R). 

Vehicle positioning to the demarcation line(s) of the traffic 

 

Fig. 3. Tested vehicle structure 
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lanes can be done by camera(s) or two L-R sensor lines (the 
solution used in this case study, as well). Each line has 3 
sensors. Figure 4 shows this arrangement: 

The information provided by this positioning system is 
discrete (correct positioning = normal error, large / very large 
deviation to the left / right = large / very large error). 

In the case of a normal error, the control algorithms of the 
control loops are the "normal" ones (PID in RST variant). In 
the case of large or very large positioning errors, the algorithms 
are "frozen" and the multi-positional algorithm takes control. 

In the figure, driving on lane 2 (L2), positions b) and c) is 
taken into account indicating a deviation of the vehicle to the 
left. Receiving the marking only by the middle sensors (case a) 
means a correct positioning (normal error). The simultaneous 
involvement of another side sensor (case b) signals a large 
error and the situation in which only one side sensor is active 
(case c) causes a very large error. 

At the time of algorithm 2 activation, compared to the 
commands calculated by algorithm 1, "classical", a value 
corresponding to the type of error (large / very large) is applied 
additively. Depending on vehicle deviation (L-R), the values 
applied are positive or negative.  

For reasons of efficiency, algorithm 2 is unique for both L-
R parts because, for directional correction, both speed control 
loops are "frozen" simultaneously, the correction command 
being applied positively to one side and negatively for the 
other. 

The four motors (integrated into the gearbox and driver 
structure) do not have the same behaviors, so that commands 
with different values (L-R) are required for their drivers. After 
leaving from the spot, which causes a slight L-R oscillation, 
the control loops "find" the values of the commands, which 
cause a rectilinear movement at a certain reference speed 

(imposed). 

Another particularity of the speed control system (L-R) is 
the "poor" information, the encoder discs having a small 
number of slots. 

B. Tests and results 

The system testing was performed comparatively by means 
of a software version containing only the classical speed 
control algorithms (L-R) (Figure 5 (a)) and by means of one 
that implements the structure proposed in Figure 1 (Figure 5 
(b)). For the first simple variant, in the case of placement error 
detection, the references of the speed control loops (L-R) were 
modified so that the system reinserted on the followed track. 

This route had straight portions and turns (slight ones 
specific to highway-type roads), (see Fig. 5). The straight track 
could be followed by both variants, but the portion including 
turns could be followed only by the proposed multi-algorithm 
variant, (see Figure 5 b). In situation a) after the first turn, the 
vehicle did not get back on track and left the lane. 

Despite changing the driving speed or the parameters of the 
speed control algorithm, for case a) no better practical results 
were obtained. One reason is that the system is, however, of 
the MIMO type, and the decentralized version with classical 
control loops (PID) has limitations. 

Figure 6 shows the physical model of the electric vehicle 
and its evolution on a traffic lane.  

Exemplifying how to apply the command, for a large error, 
deviation to the right, we have as follows: 

uk1_apl = uk1 - d_com; // uk1_apl – command R 

uk2_apl = uk2 + d_com; // uk1_apl – command L 

respectively, for a very large error, deviation to left: 

uk1_apl = uk1 + D_com; 

uk2_apl = uk2 - D_com; 

 
Fig. 4. Lane position detection system. 

 
Fig. 5. Lane following results; a) only speed L-R 
loops, b) proposed control structure; (with black dash 
line – lane trajectory). 
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The PID L-R algorithms implemented, after an 
identification of the vehicle model dynamics are as follows: 

float Kr2 = 0.25;  // Kr – proportionality constant  

float Ti2 = 15.0; // Ti – integration constant  

float Td2 = 0.0; // Kr – derivation constant  

float Te2 = 0.5; // Te – sampling period (in seconds) 

The multi-positional algorithm has two (percent) values of 
the applied steps, determined experimentally in a first phase: 

float d_com = 10; // large error step  

float D_com = 20; // very large error step 

The command steps applied to the vehicle do not manifest 
brutally due to the time constants and integrating effect of the 
electric motor systems that include besides the motor itself, the 
gearbox and the driver (mini-adjustable speed drive). 

After returning to the classical algorithms, the possible 
driving speed differences (L-R) are treated as perturbations. 

IV. CONCLUSIONS 

The paper presents a useful solution for the rejection of 
large perturbations that cannot be rejected by means of the 
classical algorithms, without significant efforts in the hardware 
and software architecture on which we perform the 
implementation. 

The switching of the main algorithm is based on the 
classical loop suspension (freezing) and the application of a 
command correction, which is proportional to the value of the 
perturbation. 

The "corrective" command is applied for a certain amount 
of time (related to error) after which we return to the value 
from which we started. The control algorithm (classical) is 
immediately "de-frozen" and continues to operate. 

The advantages of the solution include: simplicity and 
applicability in TR (speed); as disadvantages, we can first 
notice the lack of a very elaborate theoretical fundamentation. 
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