
Fast Disturbance Rejection in MIMO Process Based
on Algorithms Switching

Ciprian Lupu
Department of Automatic Control and Systems Engineering

University Politehnica of Bucharest
Bucharest, Romania

ciprian.lupu@acse.pub.ro

Cosmin-Constantin Mihai
Department of Automatic Control and Systems Engineering

University Politehnica of Bucharest
Bucharest, Romania

mihaicosmin2007@hotmail.com

Florin-Dan Secuianu
Department of Automatic Control and Systems Engineering

University Politehnica of Bucharest
Bucharest, Romania

dan.secuianu@gmail.com

Catalin Petrescu
Department of Automatic Control and Systems Engineering

University Politehnica of Bucharest
Bucharest, Romania

catalin.petrescu@acse.pub.ro

Abstract— The restrictions imposed on real-time functioning

are sometimes particularly severe and require firm action. At the
same time, the design of the control algorithms for perturbations
rejection includes a multitude of theoretical and practical
solutions that exist in the literature. Here, we can note the
methods based on robustification, on algorithms with specific
degrees of freedom, etc. The paper presents a method based on
the very rapid switching of the control algorithms, proposing at
the same time a new switching method. The solutions proposed
are tested on an MIMO process in a real time application in the
vehicle control area.

Keywords—real time, switching, disturbance rejection, control
algorithm, automotive;

I. INTRODUCTION

Reference tracking and perturbations rejection are the most
important functions of an control system. As a matter of fact,
the literature and current practice contain a multitude of
methods with outstanding results. Among these, we can
highlight those based on the robustification of control loops [1-
3], on the design of different performances in reference
tracking and perturbations rejection [4] etc. Some of these are
also found in real-time applications.

And yet, the emergence of new areas of applicability (eg
smart cars, smart city, smart grid, etc.) or the advance of the
current technology raise new and new challenges for
automation control specialists. Moreover, real-time
functioning/operation conditioning, having limited hardware
and software architectures for minimal energy consumption,
requires a fine balance between theory and practice.

This paper attempts to present the results of a practical
research for the implementation of an assisted (autonomous)
tracking system of the lanes. The subject falls within the
broader scope of "smart cars" that can move on their own.

In the context of using electric vehicles, one of the current
solutions is based on individual propulsion systems (engine
ensemble) for each wheel or for each final power transmission
element (propeller, caterpillar track, etc.) [2], [5]. This

approach involves the control of a multivariable system, which
is, most of the times, very complex.

In the current practice, the control solution of several
multivariable systems often calls for the decentralization of the
control loops, trying to reduce the multivariable system to the
simplest one, possibly of SISO type, controlled by classical
algorithms.

At the same time, the very high perturbations that can
affect a system with a certain classical configuration cannot be
rejected in a very short time. As it results from the practice, a
large part of the solutions is based on the robustification of the
control algorithms [3], [4], etc. Clearly, the cost of these
approaches is high and sometimes extremely complicated for
the real-time implementation.

The solution proposed for the rejection of large
perturbations is based on a multi-controller structure that
allows to switch the control algorithms. For the normal
functioning/operation, a classical algorithm is used, e.g. PID,
RST, etc. specifically designed for reference tracking and
rejecting "normal" perturbations. If the perturbations exceed a
certain threshold value, the algorithm switches to a specially
designed one that has a firm, very fast action.

The switching method is very fast, assuming the "freezing"
and "de-freezing" of the main loop, a procedure that uses a
minimum of hardware - software resources.

The particularity of the axial (left-right) symmetry of the
controlled process (an electric vehicle model) supports the
proposed structure applicability.

II. PROPOSED CONTROL STRUCTURE

A. Existing Solutions

The use of multi-model or multi-controller control
structures provides outstanding results for complex, non-linear
systems or with different operating regimes. Some examples
can also be found in [6, 7] or [8].

Algorithms switching in these structures is a specific
problem and has various solutions.

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 469

The most widely used switching procedure relies on the
control algorithms "hot" state [6], [8]. The procedure deals
with operating all the algorithms, as though they were
connected to the real process and with applying the calculated
command to the process, but just the most adequate one. We
obtain efficient switching through decoupling (physical /
informational) the active algorithm control and coupling an
(other) command which is calculated by another algorithm.

For simple algorithms (PI, PID, or any other structure that
hasn’t got high numerical complexity), the outcome in practice
is good and the bumps which are generated are, in general,
small or acceptable.

Nevertheless, all the control algorithms continuous
operation in the MM structure needs an outstanding hardware-
software architecture, because its complexity grows together
with the number of the necessary models / algorithms.

A variant of this solution proposes, similarly to fuzzy
systems, to mix the algorithm commands in a proportion that
depends on the adequacy of the respective algorithms relative
to the current functioning point [9].

Another eye-catching solution, proposed in [10, 11] also
known as the "backward computed reference", relies on
switching the manual - automatic (M -> A) regimes with as
few bumps as possible.

Still, this solution also requests a significant hardware-
software effort, which can, at times, be higher than the classical
one.

The real-time hardware architecture used in terrestrial or
aerial electric vehicles has several restrictions in terms of
energy consumption and complexity [12].

For this reason, we propose for the study an architecture
that uses a minimum of resources.

B. Proposed Solution

The proposed structure is based on two algorithms that will
be switched depending on the contextual situation of the
controlled process. For the case in which the process is
"normal," algorithm 1 - "classical" ensures the reference
tracking and rejection of "normal" (small-medium)
perturbations. If the value of the perturbations is high or very
high, switching to algorithm 2, of multi-position type, will take

place. This is a three-positional algorithm with several values
of the "positive" and "negative" commands.

Figure 1 shows the general structure. The values are as
follows: sp –system reference, u –calculated command of the
whole system, y – adjusted value, u1, u2 – calculated
commands by the two algorithms, switch, freeze – commands
given for algorithms switching, respectively for “freezing”
algorithm 1.

Applying the second algorithm (No. 2) brings the process
into the "normal" functioning band after a number of sampling
periods. This situation leads to switching to the first control
algorithm (No. 1 - the "classical" one). The functioning is
explained in equation (1).

lim lim

lim lim

() -
()

 -

classic system

multi positional system

u k if e e e
u k

u if e e e−

≤ ≤=  > >
 (1)

When switching / activating, the multi-positional algorithm
2, will apply a command equal to the last command calculated
by the "classical" algorithm uf – u frozen, to which a "positive"
or "negative" value is added, corresponding to the error value
which affects the process.

Typically, the greater the error, the more "firm" the
corrective action, having the option of applying thresholds or
steps. Clearly, these thresholds can be replaced by the value
calculated in proportion to the error value.

Figure 2 shows this structure. The notations included are as
follows: err = sp-y error (of control); +/- Li_ON, +/- Li_OFF
limits of activation, deactivation of the commands steps; +/-
u2_v1, +/- u2_v2 commands steps.

The steps variant is favored by how the system error is
presented. In many systems, this information has a fuzzy
representation (small - large - very large).

After rejecting the perturbations, before reactivating
algorithm 1 ("classical"), the command applied to the process
equals uf.

Fig. 1. Multi algorithms switching structure

Fig. 2. Multi positional algorithm structure

470

C. Switching Procedure Implementation

One of the problematics specific to those types of multi-
model or multi-algorithm structures [6-11], [13] is the
command switching procedure. This should be done as quickly
as possible with the commands shocks (determined by the
procedure itself) as small as possible.

As presented in the introduction, the proposed solution is
based on the functional "freezing" of the "classical" algorithm,
of PID, RST type, etc.. This approach provides a minimum
number of arithmetic operations and a non-shock passage of
the command calculated at the reactivation ("de-freezing").

In order to clarify this procedure, we will make a few
references to the real-time implementation of an RST
algorithm [4]. For example, it can offer the possibility of
imposing different performances in rejecting perturbations and
reference tracking. The choice is justified by its general form,
the implementation of a simpler numerical algorithm (PID)
being obviously easier after understanding these aspects.

The form of this algorithm is the following:

1 1 1 *() () () () () ()S q u k R q y k T q y k− − −+ = (2)

in which: u(k) – the output of the algorithm, y(k) – the
output of the process, y*(k) – the trajectory that is imposed or
filtered set point. The polynomials which correspond to them
are as follows:

1 1
0 1

1 1
0 1

1 1
0 1

() r

()

() t

R

R

S

S

T

T

n
n

n
n

n
n

R q r q r q

S q s s q s q

T q t q t q

−− −

−− −

−− −

= + + +

= + + +

= + + +







 (3)

The representation of the closed-loop control is shown in
[10].

The control algorithm in (3) can be rewritten as:

*

00

0 1

1
() ()

() ()

T

SR

n

i
i

nn

i i
i i

u k t y k i
s

r y k i s u k i

=

= =

= − −

− − − −  

 (4)

nS , nR , nT are the degrees of the corresponding
polynomials end entail the memory required for controller
software algorithm implementation. For example, if nR=2, then
three memory locations must be kept for the output of the
process: y(k), y(k-1), y(k-2). The same rule can be used for
u(k) and y*(k).

Inside the infinite loop [10] of the command calculation
procedure u(k), the code implementing equation (4) is executed
after the acquisition of the controlled value y(k) has occurred.

Still in this infinite loop, these memory variables of the
algorithm (y(k), u(k) and y*(k)) go through an update process

for a new cycle performed at the next period of the
corresponding sampling:

* * * *

(2) (1); (1) ();

(2) (1); y(1) ();

(2) (1); (1) ();

u k u k u k u k

y k y k k y k

y k y k y k y k

− = − − =
− = − − =
− = − − =

 (5)

In this context, the "freezing" of the algorithm involves the
suspension of the mathematical operations (implemented in the
code) described by equations (4) and (5) for a number of n
sampling periods. All the memory variables will retain their
last values until the “de-freezing” time.

During the suspension of these operations, algorithm no. 2 -
"multi-positional”, is executed.

III. CASE STUDY AND EXPERIMENTS

The performances of the control structure and the rapidity
of the switching method have been tested on the electric
vehicle model. In addition to movement controlling the
hardware -software structure has the role of implementing a
"lane assist" functionality, which is also present in the case of a
larger "smart car"-type system. The basic idea in the
implementation was to find a real-time solution that uses as
few resources as possible.

A. Hardware and software structure

Structurally, the controlled process is a MIMO type one.
The vehicle has an axial symmetry (left-right, L-R), with
electric motors for each of the four wheels. There are two main
loops for the speed control for each side (L-R), each loop
commanding the speed of two motors/engines. In order to
change the direction of driving, we can impose an L-R speed
difference, since the system does not have guiding wheels or
other specific elements. This particularity renders the system
applicable also to caterpillar track [14, 15] or propeller [5]
vehicles.

Figure 3 shows this system. In the figure, the values are as
follows: sp_L, sp_R the references of the two control loops;
y_L, y_R the L, R speeds (coming from the encoders); u_f_L,
u_r_L, u_f_R, u_r_R – the commands given to the motors front
(f)/back (r) on the left side (L), respectively the right side (R).

Vehicle positioning to the demarcation line(s) of the traffic

Fig. 3. Tested vehicle structure

471

lanes can be done by camera(s) or two L-R sensor lines (the
solution used in this case study, as well). Each line has 3
sensors. Figure 4 shows this arrangement:

The information provided by this positioning system is
discrete (correct positioning = normal error, large / very large
deviation to the left / right = large / very large error).

In the case of a normal error, the control algorithms of the
control loops are the "normal" ones (PID in RST variant). In
the case of large or very large positioning errors, the algorithms
are "frozen" and the multi-positional algorithm takes control.

In the figure, driving on lane 2 (L2), positions b) and c) is
taken into account indicating a deviation of the vehicle to the
left. Receiving the marking only by the middle sensors (case a)
means a correct positioning (normal error). The simultaneous
involvement of another side sensor (case b) signals a large
error and the situation in which only one side sensor is active
(case c) causes a very large error.

At the time of algorithm 2 activation, compared to the
commands calculated by algorithm 1, "classical", a value
corresponding to the type of error (large / very large) is applied
additively. Depending on vehicle deviation (L-R), the values
applied are positive or negative.

For reasons of efficiency, algorithm 2 is unique for both L-
R parts because, for directional correction, both speed control
loops are "frozen" simultaneously, the correction command
being applied positively to one side and negatively for the
other.

The four motors (integrated into the gearbox and driver
structure) do not have the same behaviors, so that commands
with different values (L-R) are required for their drivers. After
leaving from the spot, which causes a slight L-R oscillation,
the control loops "find" the values of the commands, which
cause a rectilinear movement at a certain reference speed

(imposed).

Another particularity of the speed control system (L-R) is
the "poor" information, the encoder discs having a small
number of slots.

B. Tests and results

The system testing was performed comparatively by means
of a software version containing only the classical speed
control algorithms (L-R) (Figure 5 (a)) and by means of one
that implements the structure proposed in Figure 1 (Figure 5
(b)). For the first simple variant, in the case of placement error
detection, the references of the speed control loops (L-R) were
modified so that the system reinserted on the followed track.

This route had straight portions and turns (slight ones
specific to highway-type roads), (see Fig. 5). The straight track
could be followed by both variants, but the portion including
turns could be followed only by the proposed multi-algorithm
variant, (see Figure 5 b). In situation a) after the first turn, the
vehicle did not get back on track and left the lane.

Despite changing the driving speed or the parameters of the
speed control algorithm, for case a) no better practical results
were obtained. One reason is that the system is, however, of
the MIMO type, and the decentralized version with classical
control loops (PID) has limitations.

Figure 6 shows the physical model of the electric vehicle
and its evolution on a traffic lane.

Exemplifying how to apply the command, for a large error,
deviation to the right, we have as follows:

uk1_apl = uk1 - d_com; // uk1_apl – command R

uk2_apl = uk2 + d_com; // uk1_apl – command L

respectively, for a very large error, deviation to left:

uk1_apl = uk1 + D_com;

uk2_apl = uk2 - D_com;

Fig. 4. Lane position detection system.

Fig. 5. Lane following results; a) only speed L-R
loops, b) proposed control structure; (with black dash
line – lane trajectory).

472

The PID L-R algorithms implemented, after an
identification of the vehicle model dynamics are as follows:

float Kr2 = 0.25; // Kr – proportionality constant

float Ti2 = 15.0; // Ti – integration constant

float Td2 = 0.0; // Kr – derivation constant

float Te2 = 0.5; // Te – sampling period (in seconds)

The multi-positional algorithm has two (percent) values of
the applied steps, determined experimentally in a first phase:

float d_com = 10; // large error step

float D_com = 20; // very large error step

The command steps applied to the vehicle do not manifest
brutally due to the time constants and integrating effect of the
electric motor systems that include besides the motor itself, the
gearbox and the driver (mini-adjustable speed drive).

After returning to the classical algorithms, the possible
driving speed differences (L-R) are treated as perturbations.

IV. CONCLUSIONS

The paper presents a useful solution for the rejection of
large perturbations that cannot be rejected by means of the
classical algorithms, without significant efforts in the hardware
and software architecture on which we perform the
implementation.

The switching of the main algorithm is based on the
classical loop suspension (freezing) and the application of a
command correction, which is proportional to the value of the
perturbation.

The "corrective" command is applied for a certain amount
of time (related to error) after which we return to the value
from which we started. The control algorithm (classical) is
immediately "de-frozen" and continues to operate.

The advantages of the solution include: simplicity and
applicability in TR (speed); as disadvantages, we can first
notice the lack of a very elaborate theoretical fundamentation.

ACKNOWLEDGMENT

This paper was financed together with the U. P. B. -
A.C.P.C. Res. Center, and through the Faculty of Automatic
Control and Computer and S.C. Control Engineering & Energy
S.R.L. projects.

REFERENCES
[1] Kang-Zhi Liu, Yu Yao, (2016), Robust Control: Theory and

Applications, John Wiley & Sons, 2016, ISBN 9781118754375.

[2] Y. Li, B. Li, X. Xu and X. Sun, "A Nonlinear Decoupling Control
Approach Using RBFNNI-Based Robust Pole Placement for a
Permanent Magnet In-Wheel Motor," in IEEE Access, vol. 6, pp. 1844-
1854, 2018.

[3] Pait, Felipe M., and Fuad Kassab. "Parallel algorithms for adaptive
control: Robust stability." Control using logic-based switching.
Springer, Berlin, Heidelberg, 1997. 262-276.

[4] Landau, I. D., R. Lozano and M. M'Saad, (1997). Adaptive Control,
Springer Verlag, London, ISBN 3-540-76187-X.

[5] T. Ryan and H. Jin Kim, "LMI-Based Gain Synthesis for Simple Robust
Quadrotor Control," in IEEE Transactions on Automation Science and
Engineering, vol. 10, no. 4, pp. 1173-1178, Oct. 2013.

[6] Narendra, K. S. and J. Balakrishnan, (1997). Adaptive Control using
multiple models, IEEE Transactions on Automatic Control, vol. 42, no. 2,
February, page. 171 – 187

[7] Balakrishnan., J., (1996). Control System Design Using Multiple
Models, Switching and Tuning, Ph. D. Dissertation, University of Yale,
USA.

[8] J. P. Hespanha, D. Liberzon and A. S. Morse, ”Hysteresis-based
switching algorithms for supervisory control of uncertain systems”,
Automatica, vol. 39, no. 2, Feb. 2003.

[9] M. Kuipers and P. Ioannou, "Multiple Model Adaptive Control With
Mixing," in IEEE Transactions on Automatic Control, vol. 55, no. 8, pp.
1822-1836, Aug. 2010.

[10] C. Lupu, D. Popescu, B. Ciubotaru, C. Petrescu and G. Florea,
"Switching Solution for Multiple-Models Control Systems," 2006 14th
Mediterranean Conference on Control and Automation, 2006, pp. 1-6.

[11] C. Lupu, A. Udrea, O. Pagès and M. Azzouzi, "Multi model control
solution for some classes of hysteretic processes," Control & Automation
(MED), 2010 18th Mediterranean Conference on, Marrakech, 2010, pp.
1103-1108.

[12] Bin Li, Avesta Goodarzi, Amir Khajepour, Shih-ken Chen & Baktiar
Litkouhi (2015) An optimal torque distribution control strategy for four-
independent wheel drive electric vehicles, Vehicle System Dynamics,
53:8, 1172-1189.

[13] V. Hassani, J. P. Hespanha, M. Athans, and A. Pascoal, “Stability
analysis of robust multiple model adaptive control,” in Proceedings of
the 18th IFAC World Congress, August–September 2011.

[14] S. Kojima, K. Ohno, T. Suzuki, T. Westfechtel, Y. Okada and S.
Tadokoro, "Motion control of tracked vehicle based on contact force
model," 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Daejeon, 2016, pp. 1177-1183.

[15] R. Stanciu and C. Sorandaru, "Low-cost visually servoed tracked
vehicle," IEEE EUROCON 2017 -17th International Conference on
Smart Technologies, Ohrid, 2017, pp. 680-685.

Fig. 6. Experimental electric vehicle and lane following
evolution..

473

